Democratic Underground Latest Greatest Lobby Journals Search Options Help Login
Google

James Hansen: Is there any real chance of averting the climate crisis? (a heated debate)

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
This topic is archived.
Home » Discuss » Topic Forums » Environment/Energy Donate to DU
 
OKIsItJustMe Donating Member (1000+ posts) Send PM | Profile | Ignore Sun Nov-29-09 12:08 AM
Original message
James Hansen: Is there any real chance of averting the climate crisis? (a heated debate)
Edited on Sun Nov-29-09 12:29 AM by OKIsItJustMe
http://www.guardian.co.uk/commentisfree/2009/nov/29/copenhagen-summit-climate-change

Is there any real chance of averting the climate crisis?

Nasa's James Hansen was the first to point out the perils of climate change to the US Congress. Here, he begins a heated debate with experts from around the world, from China to the threatened Maldives, and argues that our leaders must be shaken out of their complacency. But will they show enough courage at next week's Copenhagen summit to take the first steps to saving the planet?

James Hansen
The Observer, Sunday 29 November 2009

Absolutely. It is possible – if we give politicians a cold, hard slap in the face. The fraudulence of the Copenhagen approach – "goals" for emission reductions, "offsets" that render ironclad goals almost meaningless, the ineffectual "cap-and-trade" mechanism – must be exposed. We must rebel against such politics as usual.

Science reveals that climate is close to tipping points. It is a dead certainty that continued high emissions will create a chaotic dynamic situation for young people, with deteriorating climate conditions out of their control.

Science also reveals what is needed to stabilise atmospheric composition and climate. Geophysical data on the carbon amounts in oil, gas and coal show that the problem is solvable, if we phase out global coal emissions within 20 years and prohibit emissions from unconventional fossil fuels such as tar sands and oil shale.

Such constraints on fossil fuels would cause carbon dioxide emissions to decline 60% by mid-century or even more if policies make it uneconomic to go after every last drop of oil.

(Much more at the link.)
Printer Friendly | Permalink |  | Top
rhett o rick Donating Member (1000+ posts) Send PM | Profile | Ignore Sun Nov-29-09 12:44 AM
Response to Original message
1. Not a snow balls chance in hell. nt
Printer Friendly | Permalink |  | Top
 
joshcryer Donating Member (1000+ posts) Send PM | Profile | Ignore Sun Nov-29-09 01:04 AM
Response to Original message
2. Who wants to bet that they actually do the opposite?
Faced with the potential of extremely damaging environmental impacts, developing countries boost emissions in order to more quickly bring themselves to a technological level to mitigate it.

Scary thought I had just now. Fuck.
Printer Friendly | Permalink |  | Top
 
XemaSab Donating Member (1000+ posts) Send PM | Profile | Ignore Sun Nov-29-09 02:17 AM
Response to Reply #2
5. If this comes to pass
we know where to look for you. :P
Printer Friendly | Permalink |  | Top
 
Triana Donating Member (1000+ posts) Send PM | Profile | Ignore Sun Nov-29-09 02:12 AM
Response to Original message
3. NO. If we were going to avert it we'd have had to start 25-50 years ago.
Pfft.

Printer Friendly | Permalink |  | Top
 
XemaSab Donating Member (1000+ posts) Send PM | Profile | Ignore Sun Nov-29-09 02:16 AM
Response to Original message
4. No
Next question?
Printer Friendly | Permalink |  | Top
 
imdjh Donating Member (1000+ posts) Send PM | Profile | Ignore Sun Nov-29-09 10:05 AM
Response to Original message
6. "to the threatened Maldives" Here we go again....
Printer Friendly | Permalink |  | Top
 
Prometheuspan Donating Member (168 posts) Send PM | Profile | Ignore Sun Nov-29-09 02:20 PM
Response to Original message
7. yeah, its easy if we don't fake it
is there any chance of averting climate crisis?

absolutely- but not if we play patty cake with oil companies and such in a pay as you go pay to pollute program.

We need to shut them down, not introduce a new bdsm cult into the government.

punishing them, making them pay... only makes the masses pay in circuit.

Going green is easy... lets just go green. Going green is cheap. Lets just go green. Going green is better for the economy.

We can in theory do this in under 2 years, theres no reason why we can't do it at political time scales in 5 or 10.

---------------


1. There are many different ways to derive energy.
2. Each of these methods has different relationships with the environment
3. Each of these methods has different costs and different benefits
4. Each of the these methods has different pros and cons.
5. A partial list of methods; oil, coal, shale, wood, gas, Biofuels (a. food crop, b. hemp crop c. algae) Solar, Thermal Solar, Wind, Tidal, Geothermal, Hydrogen, Hydrolic, Zero Point, Nuclear.

6. Oils relationships with the environment are
a. oil is ancient organic material that has undergone geological processes.
b. oil is removed from the ground via oil wells. Ie oil is mined from the Earth.
c. oil is burned in order to get heat and chemical reaction to create the energy.
d. burning it creates smoke. the smoke is toxic. it is multiply toxic to the ecosystem in multiple ways.
e. its causing global warming
f. it causes cancer
g. it causes acid rain
h. thus it hurts humans personally and the whole ecosystem as whole in these different ways.
7. oil costs a certain amount of money to obtain from the earth, depending on how deep it is and at what pressure it is under.
8. oil costs a certain amount of money to refine and process, as well as to transport.
9. The pros of oil are that ;
a. it is accessible with very primitive levels of technology
b. our current energy infrastructure is based on oil
c. oil costs less than biofuels or, at least, it used to.
d. oils over all cost benefit analysis remains do-able from the perspective of economics alone.
10. The cons against oil are
a. oil is actually very expensive as technology compared to other forms of energy in which initial
costs render yields not limited by physical quantities. Solar power stations, Wind, and Geothermal all provide energy options which
are simply cheaper over the long term.
b. oil pollutes the ecology as mentioned in its environmental analysis above.
c. that pollution will cause the extinction of life on earth as we know it should it continue.
d. we have already reached a tipping point where we have raised the global temperature so high that the new larger contributor to
greenhouse gasses is the ice that is being melted.
e. thus we need solutions to reverse global warming, or, our civilization is doomed.
11. Coal. The specifics change, but Coal, like oil, is an ancient organic substance exposed to geological processes, mut be burned, and thus
contributes to pollution and global warming.
12. oil Shale and coal Shale. Similar to oil and coal or extensions of them, shale is harder to mine and harder to extract oil from.
thus it costs more to process.
13. Biofuels. The difference between biofuels and oil or coal is that biofuels have not been exposed to geological processes, but rather,
similarly effecting technological processes.
a.Biofuels still have toxic smoke which pollutes and which contributes to global warming
b. Biofuels trade energy shortage and economic stress for food shortage and economic stress, thus creating c +d
c. Biofuels create food shortages, hunger, and contribute to global poverty
d. Biofuels make food more expensive.
14. Solar Power
a. solar power is derived from the suns light and chemical processes.
b. Solar panels are a permanent fixture which will continue to derive energy whenever the sun shines.
c. Solar panels have real but comparatively very tiny environmental costs.
d. Solar panel technology is up to date and evolved, no more research is actually required.
e. assorted pundits and candidates and politicians and so forth like to tell us that they favor more research for solar power.
Thats a secret unsecret way of saying that they don't support employing it as a real world solution, because solar power has worked
and has been feasible and economically viable for over 20 years.
f. Solar power is derived at a specific rate depending on the size of the panel, the efficiency of the absorption of the sunlight, and the amount of
sunlight available.
g. Solar power does better at high altitudes because theres less atmospheric interference.
h. Solar Power has very low yields per physical system cost. In order to run a car on Solar energy, you have to panel the entire car,
and in order to run your house on solar energy, you would have to panel your entire rooftop and buy energy saving appliances.
i. Solar power is most attractive and useful in a whole energy strategy because it is uniquely mobile. Geothermal wells or Wind
power or tidal power (for obvious reasons) won't run a car directly.
j. Solar power could in theory be used to solve the energy crisis almost by itself, by paneling over a very large surface area. This surface area
has been calculated variously, with low estimates ranging in 10 by 10 miles, and high estimates ranging upto 200 by 200 miles.
h. The problem with this is that the cost/ benefit analysis shows us that this would be very expensive when compared to a holistic energy strategy.
i. Solar power has very low yields when compared to geothermal power.
15. Thermal Solar. Thermal Solar is a variation of Solar power with a much cheaper cost, a much lower per square foot yield, and operating at a much simpler technology level.
a. about 100 miles by 100 miles (median estimate) of Thermal solar paneling could in theory meet our energy needs.
b. Thermal Solar can be done in such a way that it has lower materials costs and lower materials environmental impact.
c. Thermal solar involves using light to heat a liquid which creates energy by pushing a turbine when the fluid expands.
16. Wind Energy.
a. Wind energy is derived from creating large turbines called wind mills.
b. Wind mills are generally very large affairs.
c. The larger a windmill is, the more energy it creates relative to its overall material cost.
d. This means that the cost/ benefit analysis shows that larger windmills are cheaper.
e. Windmills create medium yields of energy when they are operating.
f. One good large windmill can probably meet the energy needs for perhaps a dozen homes.
g. The USA could in theory meet all of its energy needs via wind power, if we invested heavily also in enormous
distribution network infrastructure.
h. The USA is rich in wind energy compared to most places on the earth.
i. the problem with windmills is downtime when theres no wind.
j. This is significantly less a problem than with solar downtime due to no sun.
k. Wind and Solar together as a team can capitalize on the two extremes of climate, and should thus be employed
alternately depending on the location one wishes to provide energy for.
l. for instance, Solar power is better in New Mexico, Arizona, California, Texas, And sunny places.
J. And yet Wind power is better in places like New Jersey, Oregon,...places alongside the Canada Border.
k. The other problem with wind power is that it can create quite an eye sore to look at.
l. Wind power also can be very devastating to local bird populations.
m. Wind and Solar might be good tandem partners for cities like Denver, where theres lots of wind and lots of sun,
but not usually at the same time except for when it is.
This allows such a system to generate power in the sunny months with solar and in the winter months with wind.
17. Tidal Power
a. Tidal power is derived much like wind power is, from the movement of water instead of air.
b. Tidal power is slightly higher in potential yields because water is denser.
c. Tidal power would have to be done more or less on remote beaches , probably in large fenced
areas to protect the systems from animals and animals and humans from the systems.
d. Tidal power is obviously only viable on the coastlines of oceans or very large bodies of water such as lakes.
e. Tidal power could in theory meet all of our energy needs.
f. the cost/ benefit analysis for tidal power is a bit murky because its a mostly unexplored technology.
g. however, proof of concept units do exist and the technology is very simple.
h. tidal power has problems due to the corrosive nature of salt water and erosion.
i. Tidal power is unpopular because it ruins one beach per facility.
j. Most accessible tidal power exists in the energy of waves.
k. Cost/ benefit analysis shows that tidal power can be done out at sea, but it becomes increasingly more expensive the further out
you go to get the power back to land.
l. Tidal power is probably a good solution for arctic regions which don't get much sun, and whose wind conditions might on some occasions be too intense,
pulling windmills down.
m. Along with Solar power and Wind power, tidal power provides a third leg of medium level yield energy for low materials cost in situations where
geothermal power would be too expensive.
18. Geothermal Power
a. Geothermal power is energy derived from the heat of the earth.
b. that heat is on average several miles beneath the surface.
c. However, there is a lot of variance in how deep that heat is, and every state has regions where that heat is within a few hundred meters of the surface.
d. Geothermal power like wind power becomes cheaper per materials cost the larger the plant is.
e. Geothermal power has very high potential yields, and is in fact competitive with nuclear power in terms of sheer yield.
f. Geothermal power plants could in theory be built with higher energy yields than nuclear power plants. However, this is not advised or advisable, due to
potential tectonic stresses such high energy plants could create.
g. in the range around 100th or even 1 tenth the yield energy of a nuclear power station, geothermal power stations could be built which would have
virtually no impact on tectonic stresses.
h. Tectonic stress is an important variable. Frequently geothermal power is most accessible along fault lines. However, these should be ignored for
caldera like situations where the system is not contributing or in danger due to tectonic stresses.
i. There are many different ways of configuring a geothermal power station, and only one which this author supports. This is called double circuit closed system geothermal power.
j. double circuit simply means that the water drops on one circuit and the steam comes up on the other.
k. closed circuit means that no water is ever lost in the system, because even the heating element chamber is a well engineered container
L. Geothermal power can in theory meet all of our energy needs
M. of the resources available to us, it does this with the cheapest over all cost, the smallest possible ecological footprint, and the highest level of
permanency.
N. Geothermal power is not a good solution in situations where a small amount of power is needed for small communities or remote estates. It has a high material cost and start up cost to drill the well.
O. Geothermal power is theoretically available almost everywhere on the surface of the earth.
P. current oil wells now go as deep as 7, 8, 9 miles deep.
Q. Enough Geothermal power is accessible within 200 meters depth to meet all of our energy needs.
R. where larger power sources are wanted in places where that heat is deeper, it is still true that geothermal heat in most places is not
deeper than 4 miles.
S. In some rare situations where the crust is thick, geothermal power might be as deep as 20 miles.
Don't drill there, import the energy from 150 miles away somewhere.
19. Hydrogen power;
a. Hydrogen power is an up and coming technology which we can expect to see having good strong applications 20 or 30 years from now.
b. Hydrogen power is very promising, but currently, its still mostly a way to store energy, not create it.
c. The two main exceptions to this are using corrosive rare earth metals to get reactions, and using phased electrical energy to short out the binding force.
d. The problem with the former is that the rare earth metal is itself a form of fuel, and that creating it, and "burning" it with water both create toxic
substances as side effects.
e. the problem with the latter is containment of the field and what happens when organic matter is exposed to high energy bursts of electricity.
f. To the knowledge of this author, water based solutions which continue to use a combustion engine are frauds.
g. When Hydrogen becomes a used technology, it will probably be for very large equipment and uses, such as trains, planes, and large boats
20. Hydrolic or Hydro Electric power.
a. This energy is created by damming a river and using falling water to drive a turbine.
b. this is incredibly damaging to the ecology.
c. Yields are fairly high per materials cost, but, still, hydro electric materials costs are comparable to geothermal power, which doesn't destroy an entire
ecosystem per power plant.
d. Hydro electric power does not exist in anywhere near sufficient quantities to meet all of our energy needs.
e. This author finds hydro-electric power to be a bad idea all the way around, not even as useful as nuclear power.
21. Nuclear power
a. Nuclear power (currently) is derived from using rare earth metals in reactions which turn some fraction of those fuels directly into energy.
b. The radioactive fuels must be mined, and this results currently in the deaths (and serious health problems) of many Miners.
c. Nuclear power currently creates hyper toxic and radio active wastes, which cost money to tend and babysit, and which in an accident
of ignorance 10 thousand years from now could wipe out an entire continents worth of our descendants.
d. Nuclear power is in many senses still a futuristic technology with much promise and much potential.
e. Thus nuclear power should be studied and refined in the laboratory.
f. The focus of such studies should be in finding ways to use non radioactive fuels,
finding ways to create dissipating forms of radiation only, and finding ways to eliminate the problem of wastes.
g. Nuclear power is very high yield, but it has exorbitant costs, especially over the long term.
h. Compared to Geothermal power, nuclear power is extremely expensive, gets more expensive instead of less expensive over time, is extremely
dangerous, and perhaps most importantly, sooner or later we will run out of nuclear fuels, and still be forced to move on to geothermal power.
i. Nuclear power will be most useful for purposes of exploring our solar system and our galaxy.
j. There is no good reason to use nuclear power for domestic use considering the other much better alternatives.
22. Zero point energy
a. Zero point energy is derived from quantum phase state fluctuations where energy is created in contradiction to the "laws" of conservation of mass and
energy.
b. Zero point energy is a futuristic technology which may become realistic within the next 100 years.
c. Final stage proof of concept zero point energy research should be conducted at least as distant from the earth as the oort cloud, due to the unforseeable
nature of potential dangers.
d. In theory, zero point energy could create a self sustaining quantum phase reaction which could create nearly unlimited energy in spaces literally too small to be seen by the naked eye.
e. Early stage research into zero point energy is the entire field of quantum mechanics, specifically Singularities, branes, and quantum holographics.


23. Summary of findings.
a. Geothermal, Solar, Wind, Tidal, and Hydrogen Technologies together provide a clear and easy path towards green and sustainable energy.
b. Geothermal energy specifically is the solution which a realistic green energy infrastructure should be rooted in.
c. It is reasonable to project a total holistic solution in which 80 percent of our energy comes from geothermal, 10 percent from Solar, 5 percent from
Wind, and 5 percent from Tidal.
d. It is also worth mentioning that electric cars are a current and viable technology.
e. This is all of it simply a sumary of known and provable science fact. The only reason why most people don't know all of this is that oil companies
and rich evil jerks have spent billions of dollars to flood the public with propaganda and misinformation.
f. The other strategy of the evil empire jerks is to promote energy resources such as biofuels or nuclear power which create a situation of extreme expense so that they can continue to exploit our need for energy in order to make money. A Geothermally based energy infrastructure would provide
extremely cheap energy (especially over the long term) and this would be the death of the energy industry.
Printer Friendly | Permalink |  | Top
 
joshcryer Donating Member (1000+ posts) Send PM | Profile | Ignore Mon Nov-30-09 02:58 AM
Response to Original message
8. Kick for truth.
Printer Friendly | Permalink |  | Top
 
DU AdBot (1000+ posts) Click to send private message to this author Click to view 
this author's profile Click to add 
this author to your buddy list Click to add 
this author to your Ignore list Fri Apr 19th 2024, 04:38 AM
Response to Original message
Advertisements [?]
 Top

Home » Discuss » Topic Forums » Environment/Energy Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002 DCScripts.com
Software has been extensively modified by the DU administrators


Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC