Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

Anon-C

(3,430 posts)
5. Great question! Answer seems to be they did start on the main sequence with what,was it a .6 solar..
Sun Feb 18, 2018, 12:43 PM
Feb 2018

...mass to start fusing hydrogen? But their lives as Supergiants begins when they have fused all the hydrogen in their cores and start fusing heavier elements in their shells, helium, C-N-O cycle and on up, IIRC:


Sorry to quote wikipedia, I'm on the run:

[link:https://en.wikipedia.org/wiki/Blue_supergiant_star|]

Supergiants are evolved high-mass stars, larger and more luminous than main-sequence stars. O class and early B class stars with initial masses around 10-100 M☉ evolve away from the main sequence in just a few million years as their hydrogen is consumed and heavy elements start to appear near the surface of the star. These stars usually become blue supergiants, although it is possible that some of them evolve directly to Wolf–Rayet stars.[2] Expansion into the supergiant stage occurs when hydrogen in the core of the star is depleted and hydrogen shell burning starts, but it may also be caused as heavy elements are dredged up to the surface by convection and mass loss due to radiation pressure increase.[3]

Blue supergiants are newly evolved from the main sequence, have extremely high luminosities, high mass loss rates, and are generally unstable. Many of them become luminous blue variables (LBVs) with episodes of extreme mass loss. Lower mass blue supergiants continue to expand until they become red supergiants. In the process they obviously must spend some time as yellow supergiants or yellow hypergiants, but this expansion occurs in just a few thousand years and so these stars are rare. Higher mass red supergiants blow away their outer atmospheres and evolve back to blue supergiants, and possibly onwards to Wolf–Rayet stars.[4][5] Depending on the exact mass and composition of a red supergiant, it can execute a number of blue loops before either exploding as a type II supernova or finally dumping enough of its outer layers to become a blue supergiant again, less luminous than the first time but more unstable.[6] If such a star can pass through the yellow evolutionary void it is expected that it becomes one of the lower luminosity LBVs.[7]

The most massive blue supergiants are too luminous to retain an extensive atmosphere and they never expand into a red supergiant. The dividing line is approximately 40 M☉, although the coolest and largest red supergiants develop from stars with initial masses of 15-25 M☉.



Latest Discussions»Culture Forums»Science»A question for my fellow ...»Reply #5